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Abstract—Consideration is given to heat transfer in a developed laminar incompressible flow with constant

physical properties in a two-dimensional channel with porous walls having constant temperature. Several

asymptotic solutions of the energy equation for small and large wall Peclet numbers and large Prandtl

numbers are obtained. The computed results of the local Nusselt number distribution in both the thermal

stabilization and channel entrance regions are generalized for all Prandtl numbers by a single relation in the
form of the relative heat transfer law.

NOMENCLATURE

X, ¥, axial and transverse coordinates;

Uy Uy, axial and transverse velocity
components;

U, mean velocity at the channel entrance;

h, duct half-width;

T, temperature;

T,,T,, inletand wall temperature, respectively;

v, kinematic viscosity ;

a, thermal diffusivity;

Pr, =v/a, Prandtl number;

Vv, suction or injection velocity (positive for
suction);

R, =Vh/v, Reynolds number;

Pe,, = 2Vh/a, suction or injection Peclet
number;

P, = | Pe, |, suction or injection rate;

n, = y/h, dimensionless transverse
coordinate;

X, = xa/h*U,, dimensionless axial
coordinate;

z, dimensionless axial coordinate;

6, =(T-T,)(T,—-T,), dimensionless
temperature;

05, bulk temperature;

Nu, Nusselt number;

F,f, velocity functions;

d, distance from the axis where f = 0;

D, 9, eigenfunctions;

Uy eigenvalues;

A, constants;

w, g, coefficients in equation (22);

¥, b, relative heat transfer coefficient and suc-

tion (injection) parameter, respectively;
Co, C, By, K, integration constants.

Subscripts
in, injection ;
s, suction ;

n, m, k, I, number of the term in expansion.

1. INTRODUCTION

SINCE the publication of Berman’s work [1], the
problems of liquid flow in channels and pipes with
porous walls have received much attention from
investigators due to increasing use of suction and
injection in modern technology.

Heat transfer in laminar flow through circular tube
with injection was first discussed in [2] subject to the
boundary conditions of the first kind. The energy
equation was solved by the method of separation of the
variables, with the eigenvalue problem being in-
tegrated by expanding the eigenfunctions into a power
series along the radial coordindte. In [3, 4], the
methods of the perturbation theory were employed to
find the first eigenfunction of the respective
Sturm-Liouville problem at low and high suction or
injection rates. Calculations of stabilized heat transfer
in a circular tube were carried out in [5] and extended
to the thermal entrance region in [6]. Numerical
solutions of the energy equation by the Fourier
method for circular tubes and two-dimensional rec-
tangular ducts at boundary conditions of the first and
second kinds, as well as a number of asymptotic
expansions of the solution for strong injection were
obtained in [7]. Calculations of heat transfer for the
thermal entrance region of a two-dimensional channel,
with hydrodynamic flow stabilization and without,
were obtained by a finite-difference method in [8, 9].
The influence of variable physical properties of the
fluid on heat transfer in a two-dimensional flat channel
is studied in [ 10]. Analytical solutions of the linearized
motion and energy equations were given in [11] as a
series of eigenfunctions expressed in terms of hyper-
geometrical functions.

In this work, asymptotic solutions of the energy
equation have been obtained which make it possible
from the results of numerical calculations to establish a
correlation between the relative heat transfer coef-
ficient and the suction (injection) parameter.
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2. THE SOLUTION BY THE METHOD OF
SEPARATION OF THE VARIABLES

The energy equation for a steady-state flow of
in a plane—parallel channel without regard for axial
heat conduction is

3T+ oT T
— 4t U, =a—s.
ox Yoy ay?

Uy (1

In the case of axial symmetry, with the temperature
at the inlet cross-section and channel walls being
constant, the boundary conditions are

oT
y=0—=0’

x=0 T=T,, -
ay

y=h T=T,(2)

The axial and transverse velocities for hydro-
dynamicaily stabilized flow may be expressed in terms
of a single function F(n; R) [1]

where F is found by solving the ordinary differential
equation

F" + R(FFH _ F!Z) =K
n=0 F=F"=0, n=1

4)

F'=0 F=1.
At small values of the parameter R, the solution of
equation (4) can be given as the following expansion

(1]

F(n; R) = Fo(n) + RF(n)+O(R?), (5)
where
3 n?
Fo=3"™72

corresponds to plane Poiseuille flow.

Taking into account equation (3), the energy equa-
tion (1) can be written in terms of dimensionless
variables as

Pe,X 30  Pe, 80 5%
{———)F(n;R)— “F(n;R)— = —.
( 2 > iRy + 5 FiRG =55

(6)

Let us transform equation (6) from the coordinate x
to a new axial variable

2 | ( ) Pe X )
nl1 -
Pe, 2

zZ= -

changing from 0 to oc for both injection and suction.
The relationship between the variables z and X is
shown in Fig. 1.

Then, equation (6) subject to the boundary con-
ditions (2) will be written as

00 Pe a0 0%
F(n;R)— F(n:R)— = —~
0 R) =+ =5 n )an an? )
06
z=0 0=1,1=0 —=0,n=1 0=0.

on

The Nusselt number is determined from
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Fi1G. 1. The relationship between the variables z and X.

where

is mean flow bulk temperature which changes along
the channel length according to the one-dimensional

energy conservation equation
d6, (Pe,—Nu)
bt 0, 9
& 5 b ©)

The solution of the energy equation (8) can be
presented as a series of eigenfunctions

0= Z Anq)n(r,)exp(—“nz) (10)

n=1
where @, and y, are found from the solution of the
Sturm-Liouville problem
&0, Pe,  do,
dn? 2 dy

+ 1, F ©,=0,

0,0 =D, (1)=0. (1)

By inserting

P ) n
®, = exp ({ZJ‘ Fd).)qﬁ,,
; 0

into equation (11), we obtain the following eigenvalue
problem to determine ¢, and y,

d%¢ ( Pe Pe?
n v FI — v F2 =0
dn2+[“"+4 16 _dJ" ,

$.(0) = é,(1) = 0.

The constants A4, in (10) are found from the expression

! Pe, [ " !
A, = exp< g f F d).) Fé¢, dn/ J F¢rdn.
0 4 h) ¢ 0

At high Prandtl numbers, Pr » 1, and the Peclet
numbers for injection (suction) that meet the condition

(12)

(13)
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P/Pr « 1,injection or suction has a minor effect on the
flow hydrodynamics, since the parameter R = Pe, /2Pr
in this case is small, it is possible to disregard all terms
after the first one in equation (5), i.e. to assume that
F=F, This allows one to establish a correlation
between the solutions of the energy equation for
suction and injection occurring at the same rate, that is
at the same values of P. As seen from equation (13), the
only difference between the suction and injection at the
same values of P lies only in the sign in front of the Pin
i, + Pe,/4. 1t follows from equation (13) that at high
Prandtl numbers, when F is independent of Pe,, the
eigenfunctions and eigenvalues for suction and in-
jection of the same intensity are related as

P (" P
®, =exp (— Ef Fo d),)(Dn\, B, =4, + 5 (14)
0

Taking into account equation (14) one can establish
a correlation between the bulk temperatures and local
Nusselt numbers for suction and injection that cor-
respond to the same value of P

PZ
Qb“(z; Py=1—exp (-“ 7) [1—@,3{2; P)J (15)

Nu;{z; Py = Nufz; Py — P. (16)

The relationship between 6, and Nu in equations
(15)and (16)is valid at equal values of z on the left- and
theright-hand side in the equations which corresponds
to different X, and X, (Fig. 1) related by

X
X = =57
1-PX /2
Consider the solution of the energy equation at low
velocities of suction and injection when the term of the

order of Pe? in equation (13) can be neglected. Then
equation (12) is solved as

Peo (" N\ & Aubu ()
= — | Fdi PR LA
f e"p(4 L )Z [= Peo/du,

n=1

Pe,
X exp [“(th - T)z:' (17)

1 1
A,m=j Flénod”/j F' ¢g,dn
0 0

and ¢,, and pu,, are eigenfunctions and eigenvalues of

the following Sturm-Liouville problem

d? d,,
dn?

where

+ bnoF bne =0, $3,(0) =, (1)=0. (18)

The eigenvalues u, in the first linear approximation
on Pe, are related to p,, through

Pe,
Hn = Hpy — T
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From equation (17} one can determine the Nusselt
number at low values of Pe,

Pe,

Nu(z; Pe,, R) = Nugy(z;R) + (19)
where Nu, is found by solving the energy equation
without regard for the transverse convection
, 80, %0,
Fin; R)E =
The coupling between X and X, (Fig. 1), to which
Nuand Nu, in (19) should be related, is determined by

2 [ ( PevX(,)]
l—expl ——— 1}
Pe, 2

Thus, equations (17) and (19) aliow one to express
the temperature distribution and Nusselt number at a
small value of Pe, in terms of the characteristics of a
more simple problem (18) or (20). For the Poiseuille
velocity profile the values of @, #,,, 4n, and Nu are
found from the solution of the Nusselt-Graetz plane
problem [12].

Let us now pass to the solution of the problem for
strong suction or injection. We shall derive the ex-
pressions for the first eigenfunctions and eigenvalues in
extreme cases of Pe, — + oo, Equation (11) will then
contain a small parameter at the higher derivative
1/Pe,. Since at P —» o the order of the differential
equation decreases, there is no need for the extreme
eigenfunctions to satisfy the two boundary conditions
in (11). In order to determine the limiting eigenfunc-
tions ®F and eigenvalues uf, these can be given as a
series in a small parameter

(20)

X =

@D

x x

Pev —k Pe,, 11—k
or= 3 (%) ovur=3 (%) a0

k=0 k=0

Substituting (22) into (11) and equating the terms
with the like powers of Pe, we obtain a chain of
equations to find w, and g,

d(.l)o

F— — goF'w, =0 (23)
dn
do, ! 2y ,
Faf——goF = drsz L + g F'w,
1 +n=k
+F Y gou k=1 (24)
L.a=0

For suction, the solution of equation (23) is
o, = Co, g, = 0.
Then, from (24) we find

o, =g;InF + Cy,

and since F(0) = 0, it follows that g, = 0. Similarly, it
can be shown that g, =0atk > 2.

In the case of injection, equation (23) is satisfied,
with due regard for the rules of differentiation of
generalized functions [13], by the §-function
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wgin = Bod(n), g()"l =-1L

From (24) we obtain

1 1 1
g, F(0) = f Foy, dn + f F'w]“dﬂ = lem =0.
in 0 0 0
Hence g, = 0,since F'(0) # 0;ina similar fashion
we can find that 9, = Oatk = 2.
Thus, all the first eigenfunctions normalized to

1
JQldn=l
0

are located between two extreme profiles; @, = 1 at
Pe, - o and ®, = &(n) at Pe, - — . The
eigenvalues u, are determined by the asymptotic
expressions

Pe,
2

#y =o(Pe;") at Pe, » oo,y = —

+ o(Pe; ") at Pe, » — o (25)

wheren = 0,1, 2,....

It follows from (25) that with the growth of P, u;
very rapidly approaches its extreme values equal to
zero for suction and — Pe,/2 for injection. It can be
shown that the law governing this approach has an
exponential character.

In order to derive asymptotic expressions for eigen-
functions and eigenvalues at any n in the case of
strong suction or injection, we shall use the WKB
method [14]. At large P the function in the square
brackets in equation (13)

Pe Pe?
= e v v FZ
f (un + )F T

vanishes at a small distance from the axis

5= 4\/[;4,,+Pev/4]
“PV| FO) [

Assuming that within the region 6 < < 1, where f
< 0, an exponentially increasing term is lacking in the
solution of equation (13), we set

¢, =%exp[— J ﬂ\/(—f)dX]. @7)

0

(26)

Equation (27) conforms asymptotically to the boun-
dary condition ¢,(1) = 0 with an accuracy of exp
(—P)/P'2, In the range 0 < 5 < 4, the solution of
equation (13), matched with (27), has the form

é
6, = f—f/(fcos”" JUdi - ﬂ

The solution (28) should satisfy the boundary
condition ¢,(0)=0. Hence, accounting for f'(0)=0

we obtain
8 b/
sin[‘[ J(f)di — 4:] =0
(o]

(28)
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or for (26)

(29)

i n( +Pel, 1 _s
sinf = (e + 5 2|=°

From equation (29), we find the limiting expression
for the eigenvalues

—Pe,
e +n—-1)P.

(30)

lim yu, =
P

As follows from (30), u, is independent of the
velocity distribution (F function) at P — o and
depends only on the suction or injection rate and the
ordinal number n.

The results of numerical solution of equation (13)
obtained for the Poiseuille velocity profile confirm the
asymptotic expression (30) shown by dashed lines in
Fig. 2. Figure 3 depicts the first three eigenfunctions of
equation (13); it is seen that at high values of P the
region of oscillating ¢, shifts toward the axis, while in
the wall region ¢, — 0. The nature of the obtained
distribution of eigenfunctions agrees well with the
asymptotic solutions (27) and (28).

Equations (25) and (30) yield the relationships for
Nu under intense suction or injection

Nu = Pe, + o(Pe,") at Pe, -,
Nu = o(Pe;")

(31

at Pe, » — .,

wheren = 0,1,2,....
Equations (31) specify the limiting functions for Nu
derived in [4].

3. CALCULATION BY THE FINITE-DIFFERENCE
METHOD

In order to obtain a numerical solution of equation
(8), an implicit two-layer, six-point difference scheme
was employed with the use of the factorization method
for each layer. The function F was determined by
integrating equation (4).

Figure 4 shows the calculated local Nusselt number
at different values of the parameters Pe, and Pr. With

500

n={
4./_/__,-——[—'4——-

L
0 20 40p50 80 100

F1G. 2. Dependence of eigenvalues on the parameter P.
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FIG. 4. Variation of Nu number along the channel.

an increasing injection rate the Nu number tends
asymptotically toward zero for all z, while with an
increasing suction rate it approaches Pe, which agrees
with (31). The curves ! in Fig, 4 show the boundaries of
the thermally stabilized region found from the con-
dition Nu = 1.01 Nu,,.

The larger effect of the decreasing Pr number on Nu
is attributed to a rise in the parameter R = Pe,/2Prata
fixed Pe,. In the case of suction the fullness of the axial
velocity profile increases with R [15], on account of
which for lower values of Pr there are higher values of
Nu. On the other hand, in the case of injection the
fullness of the profile somewhat decreases as compared
to the Poiseuille one, though not much, which is
responsible for the reversed effect of Pr on Nu. As seen
from Fig. 4, Nu is actually independent of Pr (or R)in
the thermally stabilized region at Pr = 0.7 which was
also pointed out in [ 7]. In the thermal entrance region
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at low Prandtl numbers this effect can be substantial
for suction, but as soon as Pr = 5 it becomes
insignificant.

Figure 5 shows variation in the fluid bulk tempera-
ture along the channel. In the case of injection, 8, drops
more abruptly than it does in a channel with imperme-
able walls which is accounted for by some additional
loss of heat by the main flow for heating the cold
injected liquid (if the temperature at the channel inlet
exceeds that of the wall). Conversely, in the case of
suction the liquid, which leaves the channel at the wall
temperature, gives up, according to (9), the excess of
heat Pe,8,/2 to the main flow and 6, varies more slowly
than in a channel with impermeable walls. According
to (9), at a high suction rate, Nu — Pe,, the bulk
temperature changes hardly at ali, and over the whole
channel, except for a narrow wall region, there is
virtually an isothermal flow with a temperature equal
to that at the channel inlet.

4. THE RELATIVE HEAT TRANSFER COEFFICIENT
AS A FUNCTION OF THE SUCTION
{(INJECTION) PARAMETER

In the theory of a turbulent boundary layer wide
usage has been gained by the relative law of heat and
mass transfer = f(b) [16], where y = Nu/Nu, is the
relative heat transfer coefficient, b = Pe,/Nu, is the
suction or injection parameter and Nuy is the Nusselt
number for the flow past an impermeable plate. The
relative variables  and b allow the experimental and
computed data on heat transfer to be correlated by a
virtually universal relation which depends only weakly
on Re and Pr numbers, the effect of which on Nu is
taken into account by the normalizing coefficient
Nuy(Re, Pr). Similarly, with a suitable choice of Nu,
one can correlate the predicted results on heat transfer
for laminar flows in channels.

In order to justify the selection of Nu, in the relative
heat transfer law, let us consider the various factors
responsible for the effect of suction and injection on
heat transfer. As follows from equation (6), there are
three reasons for the effect of suction (injection) on
heat transfer: first, the change in the flow rate with

10 —
-20
a8+
-10
o -4
& 0
0;4 O 10 4
p=8p
loyis -
Mot 3k 2 M I
1078 102 10

F1G. 5. Variation of the mean bulk temperature along the
channel at Pr = 0.7.
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distance along the channel which is taken into account
by the factor (1 — Pe,X/2) in the first term; second, the
suction (injection)-induced distortion of the axial
velocity profile, and third, lateral convective heat
transfer [the second term of equation (6)].

The effect of the first factor may be obviated by
transforming to a new axial coordinate, z, according to
(7). Then, the first term in equation (8) which stands for
the axial heat convection will have the same form as
that for a channel with a constant flow rate. Therefore,
comparison between the numbers Nu and Nu, should
be made in different cross-sections, X and X, which
correspond to one and the same value of z and which
are interrelated by equation (21).

The dependence of heat transfer on a change in the
axial velocity profile characterized by the parameter R
(or Pr at a fixed Pe,) can be determined separately by
solving equation (20). The results of computation of
Nug(z) at various R are given in Fig. 6. The extreme
cases when |R| = =« correspond to a slug velocity
profile, F' = 1, for suction and to a cosine profile, F' =
/2 cos (nn/2), for injection [15].

If now for Nu, we take Nuy(z, R)from the solution of
equation (20), the relative heat transfer coefficient =
Nu(z, Pe,, R)/Nuy(z, R} will then describe a direct
influence of suction or injection on heat transfer
caused by the lateral convection alone. Let the relative
suction (injection) parameter be b = Pe,/Nugy(z, R).
Then the asymptotic correlations (19) and (31) will
take the form

Y(b—-0) =1 + g Ylb— ) =b+olb™"),
Yb— < )=0(b"). (32)

The relative variables ¢ and b have been introduced
with the object of deriving a single relationship which
could correlate the predicted results on heat transfer
for all Pr. The effect of Pr (or R) on Nu is accounted
for by the coefficient Nu,(R). As seen from (32), the
function y(b) is really independent of Pr at low and
high values of b. Since (b) does not depend on Pr
within the whole range of the parameter b, then, by
equation (16), the following condition should be
satisfied

20

N
10

.

O-BA e
10 10 b d

10"

Fi1G. 6. Variation of Nu, along the channel.
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Yinl|b)) = W|b]) — |b].
The results of numerical calculation of the heat

transfer modes (Fig. 7), for both the stabilized region
and inlet section, over the whole range of Prandtl

(33)

numbers are rather well correlated by the
Mickly-Spalding equation
b b
_ bexpb (34)
expb—1

which satisfies equations (32) and (33).

It should be noted that in determining y and b for a
stabilized heat transfer at Pr > 0.7 one can replace
Nu, (R)by Nu, (R = 0) = 3.77 [12], i.e. as already
remarked, the hydrodynamic effect of suction and
injection on heat transfer can be neglected as com-
pared with the thermal effect caused by convection and
characterized by the parameter Pe,. Figure 8 compares
the predictions of equation (34) at Nu,, , = 3.77 (solid
line) with the numerical solution at Pr = 0.7 (dotted
line) ; the crosses show the results taken from [8] for Pr
= 0.72. The both curves virtually coincide for suction
and agree sufficiently well for injection. With an
increasing Pr, this agreement becomes even better. As
seen from Fig. 6, in the case of injection the difference
between Nuy(z) in the inlet section is small even for R

= 0and R = — . Therefore, in the case of injection
0 Prs1 20001 I
1'0*-. Pr=1 Z=0o -5
o Pr=0 z=0004
n'e_l Py=0 Z=o00 j 144
A Pr=oo Z=0001

W Q8L 4 Pr=ooZ=on 13
04 2
02r 1
0 s | L
-6 -4 -2 0 2 4 6

8

F1G. 7. Dependence of the relative heat transfer coefficient on
the parameter b.

4 —— T i
st
Mioo
2__
{
1 1 ! 1 1
20 -15 w0 -5 o 5 0 5 2
e,

FiG. 8. Dependence of Nu on Pe, over the thermally sta-
bilized region.



Heat transfer in laminar plane channel flow with uniform suction or injection

one can assume Niug(z, R} = Nugl(z, R = 0) for all the
Prandtl numbers throughout the entire flow. For

su
th
ac

ction, this difference can be rather appreciable in the
ermal entrance section and should be taken into
count at small Prandtl numbers,

We conclude by noting that the results obtained for

a plane channel can be readily extended to a circular

tu

be flow except for the range of suction velocities

within which there is no hydrodynamically developed
flow [18].

1

2.
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TRANSFERT THERMIQUE DANS UN ECOULEMENT LAMINAIRE EN CONDUITE AVEC
SUCCION OU INJECTION UNIFORME

Résumé—On étudie le transfert thermique dans un écoulement laminaire et incompressible a propriétés
constantes dans un canal bidimensionnel a parois poreuses isothermes. On obtient des solutions
asymptotiques de I'équation de I'énergic pour des petits et des grands nombres de Péclet et des grands
nombres de Prandtl. Les résultats calculés du nombre de Nusselt local dans la région thermiquement
stabilisée et 4 l'entrée sont généralisés pour tous les nombres de Prandtl par une relation unique.

WARMEUBERGANG BEI LAMINARER STROMUNG IN EINEM EBENEN
KANAL BEI GLEICHFORMIGER ABSAUGUNG ODER EINSPRITZUNG

Zusammenfassung—Betrachtet wird der Wirmeiibergang bei ausgebildeter laminarer inkompressibler
Stromung mit konstanten Stoffwerten in einem zweidimensionalen Kanal mit pordsen Winden, die
konstante Temperatur haben. Einige Naherungslosungen der Energiegleichung fiir kleine und grofle
Peclet-Zahlen im Wandbereich sowie grofle Prandtl-Zahlen werden erhalten. Die berechneten Ergebnisse
der Ortlichen Nusselt-Zahl-Verteilung sowohl in den Gebieten der thermischen Stabilisierung als auch im
Kanaleintrittsbereich werden fiir alle Prandtl-Zahlen durch eine einzige Beziehung in Form des relativen
Wirmeiibergangsgesetzes allgemeingiiltig wiedergegeben.

TEMJIOOBMEH TMPHU JIAMUHAPHOM TEYEHHH B INJIOCKOM KAHAJIE
C PABHOMEPHBIM OTCOCOM HJIH BAYBOM XHUAKOCTHU

AnHoTauma — PaccMATPHBAETCH TENIONEPEHOC NPH JIAMHHAPHOM PAa3BUTOM TEYEHHH HECKHMAEMOHN

XHAKOCTH C TIOCTOSHHBIMH (PH3IHYECKUMH CBOMCTBAMH B MJIOCKOM KaHaile C IPOHHUAEMBIMH CTEHKAMH,

HMEIOUIAMH NOCTOSHHYIO TeMnepaTypy. [TonyueHbl acHMITOTHHECKHE PELUCHHS YDARBHEHHA JHEPruH

npu Maabix ¥ Gonbwimux yuenax Tlexne [Ans noToka uepe3 CTEHKY ¥ npH Soabwux uMcnax [panarns.

Pe3yibTaThl YHCIEHHBIX PAcueTOB pacnpefelieHHs NoKanbHOro yucna Hyccenbta xak B obnactu

TennoBoit cTabUAN3aUMK, TAK N BO BXOAHOM yyacTke s BceX vucen Tlpanatns obobmarorcs enuHoR
3ABHCHMOCTBIO B GOPME OTHOCHTEABHOTO 3aKOHAa Tennoobmexa.



